Tetrahedron Letters, Vol. 26, No. 47, pp 5803-5806, 1985 0040-4039/85 \$3.00 + .00 ©1985 Pergamon Press Ltd. Printed in Great Britain

AN ASYMMETRIC SYNTHESIS OF CIS-4-t-BUTYLDIMETHYLSILOXY-2-CYCLO-PENTEN-1-OL AND CIS-4-TETRAHYDROPYRANYLOXY-2-CYCLOPENTEN-1-OL, VERSATILE CHIRAL SYNTHETIC INTERMEDIATE FOR PROSTANOIDS

> Masatoshi Asami Department of Chemistry, Faculty of Education, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240, Japan

Abstract: cis-4-t-Butyldimethylsiloxy-2-cyclopenten-1-ol and cis-4-tetrahydropyranyloxy-2-cyclopenten-1-ol were obtained with high enantiomeric excesses (ee) by the reaction of cis-3,4-epoxycyclopentan-1-ol derivatives with chiral lithium amide. An application to the syntheses of both (\underline{S}) - and (\underline{R}) - 4-hydroxy - 2-cyclopentenone was demonstrated.

Chiral cis-4-t-butyldimethylsiloxy-2-cyclopenten-1-ol (1a) (R= t-BuMe₂Si) and cis-4-tetrahydropyranyloxy-2-cyclopenten-1-ol (<u>1b</u>) (R=THP) are attractive synthetic intermediates because they can be easily converted to both enantiomers of 4-hydroxy-2-cyclopentenone derivative (2) and cis-2-oxabicyclo[3.3.0]oct-6-en-3-one (3), ^{1a,c,e)} versatile synthetic blocks for the enantioselective synthesis of prostaglandines and various cyclopentanoid natural products.²⁾ In several reports, enantioselective enzymatic hydrolysis of cis-1,4-diacyloxy-2-cyclopentene^{1a,b,c,d)} or enantioselective acylation of cis-2-cyclopenten-1,4-diol^{1e,f}) was used for the synthesis of chiral cis-4-acyloxy-2-cyclopenten-1-ol (1c) (R=R'CO). 1b was derived from 1c by functional group manipulations. 1b, c, e)

a. R=t-BuMe₂Si b.R= THP c. R = R'CO

Here we wish to report the direct asymmetric synthesis of <u>1a</u> and <u>1b</u> from 3-cyclopenten-1-ol $(\underline{4})^{3}$ by applying the asymmetric reaction developed by us.⁴⁾

Initially, <u>4</u> was converted stereoselectively to cis-3,4-epoxycyclopentanol $(\underline{5})^{5}$ by the hydroxy-directed epoxidation with VO(acac)₂ and tbutyl hydroperoxide in benzene.⁶) Then, cis-4-t-butyldimethylsiloxy-1,2epoxycyclopentane $(\underline{6a})^{7}$ and cis-4-tetrahydropyranyloxy-1,2-epoxycyclopentane $(\underline{6b})^{7}$ were obtained by treating <u>5</u> with t-butyldimethylsilyl chloride in DMF⁸) or dihydropyrane in CH₂Cl₂ in the presence of catalytic amount of p-toluenesulfonic acid⁹) in 65 % or 49 % yield from <u>4</u>, respectively. (Scheme 2)

Then, an asymmetric transformation of <u>6a</u> to <u>1a</u> was examined in various kinds of solvent with lithium (<u>S</u>)-2-(pyrrolidinomethyl)pyrrolidide (<u>7a</u>) or lithium (<u>S</u>)-2-(morpholinomethyl)pyrrolidide (<u>7b</u>). The best result was obtained in case that the reaction was carried out in benzene using <u>7a</u> to yield (<u>1S</u>,4<u>R</u>)-<u>1a</u>⁷) in 92 % with 90 % ee. <u>1b</u> was also obtained with high ee. The results are summarized in Table.

A typical experimental procedure is as follows; to a benzene solution (3 ml) of (S)-2-(pyrrolidinomethyl)pyrrolidine (132 mg, 0.86 mmol) was added a hexane solution (0.5 ml) of butyllithium (0.77 mmol) under a nitrogen atmosphere at 4 °C. After 0.5 h at that temperature, 6a (102 mg, 0.48 mmol) in benzene (2 ml) was added at 4 °C and stirring was continued for 3 h. Then, aq. NH₄Cl and ether were added, and the organic layer was washed with water and brine. After drying (anhydrous Na₂SO₄) and evaporation of the solvent <u>in vacuo</u>, the oily substance was purified by silica-gel column-chromatography (hexane:ether=1:1) to give <u>1a</u> (94 mg, 92 %), $[\alpha]_D^{22}$ +21.5° (c 0.94, CHCl₃).

Further, the syntheses of both (<u>R</u>)- and (<u>S</u>)-4-hydroxy-2-cyclopentenone (<u>8</u>) were achieved by simple functional group manipulations using (1<u>S</u>,4<u>R</u>)-<u>1a</u>. Oxidation of (1<u>S</u>,4<u>R</u>)-<u>1a</u> with pyridinium chlorochromate (PCC)¹⁰) led to (<u>R</u>)-<u>2a</u> (86 %, $[\alpha]_D^{25}$ +58.1 ° (c 1.13, CH₃OH); lit. $[\alpha]_D^{20}$ +32 ° (c 0.051, CH₃OH) for 56 % ee of (<u>R</u>)-<u>2a</u>,^{11a}) $[\alpha]_D$ +62.2 ^{11b}), which was deprotected with AcOH-THF-H₂O (3:1:1)⁸) to yield (<u>R</u>)-<u>8</u> (83 %, $[\alpha]_D^{25}$ +81.3 ° (c 1.55, CHCl₃),

Table. Asymmetric Synthesis of <u>la</u> and <u>lb</u> .					
Ļ	i)	N Li <u>7a</u>	or $\sum_{\substack{N \\ Li}{\underline{7b}}}$	и он	
Ō	R in	aa NH-CI			=t-BuMe ₂ SI
<u>6</u>		4. 1411201		<u>1</u>	= THP
epoxide	lithium amide	solvent	yield/ _% a)	[α] _D (c, CHCl ₃)	ee/ % ^{b)}
<u>6a</u>	<u>7a</u>	THF	76	[α] ²⁰ +16.5 ° (1.17)	66
		ether	83	[α] ²² +16 9 ° (0.88)	70
		benzene	92	$[\alpha]_{D}^{22}$ +21.5 ° (0.94)	90(86) ^{C)}
		toluene	84	$[\alpha]_{D}^{22}$ +20.0 ° (0.89)	84
		hexane	91	$[\alpha]_{D}^{22}$ +21.0 ° (0.82)	88
	<u>7b</u>	THF	65	$[\alpha]_{D}^{22}$ +5.7 ° (0.69)	26
		benzene	78	$[\alpha]_{D}^{16}$ +19.7 ° (0.68)	89
<u>6b</u>	<u>7a</u>	THF	89	$[\alpha]_{D}^{19}$ +23.2 ° (0.82)	62 ^d)
		benzene	77	$[\alpha]_{D}^{18}$ +27.3 ° (0.77)	89 ^d)

a) Isolated yield.

b) Determined by conversion to (4R,1S)-4-hydroxy-2-cyclopentenyl benzoate. 1e)

c) Determined by conversion to (S)- and (R)-4 $\frac{1}{12}$ acetoxy-2-cyclopentenone followed by ¹H NMR analysis in the presence of Eu(hfbc)₃.

d) Optical rotation value of <u>1b</u> has been reported $([\alpha]_{p}^{20} - 20.3 \circ (c \ 1.3, \ CHCl_{3}), {}^{1e}) [\alpha]_{p}^{20}$ +21.5 ° (c 3.12, CHCl₃) for 86 % ee of $(1\underline{S}, 4\underline{R}) - \underline{1}\underline{b}^{1}c^{2}$, but it would not be possible to calculate the ee based on these value because there is another chiral center in the tetrahydropyrane ring in <u>lb</u>.

 $[\alpha]_D^{26}$ +83.5 ° (c 2.00, CH₃OH); lit. $[\alpha]_D^{20}$ -94.1 ° (c 3.4, CHCl₃) for $(\underline{S})-\underline{8}, \underline{1e})$ $[\alpha]_{D}^{24} + 83.1^{\circ}$ (c 1.70, CH₃OH) for 94 % ee of $(\underline{R})-\underline{8}^{12}$). $(\underline{S})-\underline{8}$ ($[\alpha]_{D}^{24}$ -79.3 ° (c 1.5, CHCl₃), $[\alpha]_{D}^{28}$ -85.1 ° (c 1.34, CH₃OH)) was obtained as follows; i) conversion of (1S, 4R) - 1a into (1R, 4S) - 1 - t - butyldimethylsiloxy - 4 - butyldimethyl - 4 - butyldimethylylig - 4 - butyldimettetrahydropyranyloxy-2-cyclopentenol $(9)^{7}$ (dihydropyrane, cat. p-toluenesulfonic acid, $CH_2Cl_2;^{9}$ 94 %, $[\alpha]_D^{24}$ +2.04 ° (c 1.08, $CHCl_3$)), ii) removal of t-butyldimethylsilyl group (Bu_4NF , THF)⁸) leading to (1<u>R</u>,4<u>5</u>)-<u>1</u>b (92 %, $[\alpha]_D^{27}$ -22.3 ° (c 1.25, $CHCl_3$); lit. $[\alpha]_D^{20}$ -20.3 ° (c 1.3, $CHCl_3$), ^{1e)} $[\alpha]_D^{20}$ +21.5 ° (c 3.12, $CHCl_3$) for 86 % ee of (1<u>5</u>,4<u>R</u>)-<u>1</u>b)¹c)); iii) oxidation (PCC) of $(1\underline{R},4\underline{S})-\underline{1}\underline{b}$ to $(\underline{S})-\underline{2}\underline{b}$ (82 %, $[\alpha]_{D}^{29}$ -54.9 ° (c 0.97, CHCl₃); lit.^{1e)} $[\alpha]_{D}^{20}$ -70.5° (c 1.3, CHCl₃)); iv) followed by deprotection (AcOH-H₂O, (7:3); 81 %).^{1e)} (Scheme 3)

Both (<u>R</u>)- and (<u>S</u>)-<u>8</u> were derived to (<u>R</u>)- and (<u>S</u>)-4-acetoxy-2-cyclo-

pentenone, and the ee of those were 86 % by $^1{
m H}$ NMR spectra taken with $Eu(hfbc)_{3}$.¹²⁾

It should be noted that the chiral cyclopentenol derivative 1, a useful synthetic intermediate for the enantioselective synthesis of various cyclopentanoid natural products, was easily obtained with high ee by the reaction of achiral epoxide with chiral lithium amide.

References

- 1) a) S. Takano, K. Tanigawa, and K. Ogasawara, J. Chem. Soc. Chem. Commun., 1976, 189. b) Y-F. Wong, C. S. Chen, G. Girdaukas, and C. J. Sih, J. Am. Chem. Soc., 106, Sofo, (1984). c) K. Laumen and M. Schneider, Tetrahedron Lett., <u>25</u>, 5875 (1984). d)
 K. Laumen, E. H. Reimerdes, M. Schneider, and H. Görisch, <u>1bid.</u>, <u>26</u>, 407 (1985). e) M.
 Nara, S. Terashima, and S. Yamada, Tetrahedron, <u>36</u>, 3161 (1980). f) L. Duhamel and
 T. Herman, Tetrahedron Lett., <u>26</u>, 3099 (1985).
- 2) a) M. Harre, P. Raddatz, R. Walenta, and E. Winterfeldt, Angew. Chem., 94, 496 (1982). b) R. Noyori and M. Suzuki, <u>ibid.</u>, <u>96</u>, 854 (1984). c) J. J. Partridge, N. K. Chada, and M. R. Uskoković, J. Am. Chem. Soc., <u>95</u>, 7171 (1973). d) L. Gruber, I. Tömösközi, E. Major, and G. Kovacs, Tetrahedron Lett., 1974, 3729. e) I. Tömösközi, L. Gruber, G. Kovacs, I. Szekely, and V. Simonidesz, <u>ibid.</u>, <u>1976</u>, 4639. f) H. Nagaoka, T. Miyakoshi, and Y. Yamada, ibid., 25, 3621 (1984).
- 3) H. M. Hess and H. C. Brown, J. Org. Chem., 32, 4138 (1967).
- 4) M. Asami, Chem. Lett., <u>1984</u>, 829.
- 5) a) A. C. Darby, H. B. Henbest, and I. McClenaghan, Chem. Ind. (London), 1962, 462.
- b) F. David, J. Org. Chem., 46, 3512 (1981).
- 6) a) K. B. Shapless, R. C. Michaelson, J. Am. Chem. Soc., <u>96</u>, 5254 (1974). b) G. Stork, I. Paterson, and F. K. C. Lee, <u>ibid</u>, <u>104</u>, 4686₁(1982).
- 7) All new compounds showed satisfactory IR and ¹H NMR spectra.
 8) E. J. Corey and A. Venkateswarlu, J. Am. Chem. Soc., <u>94</u>, 6190 (1972).
- 9) K. F. Bernady, M. B. Floyd, J. F. Poletto, M. J. Weiss, J. Org. Chem., 44, 1438 (1979).
- 10) E. J. Corey and J. W. Suggs, Tetrahedron Lett., 1975, 2647.
- 11) a) T. Tanaka, S. Kurozumi, S. Miura, M. Koboyashi, and S. Ishimoto, Tetrahedron, 32, 1713, 1893 (1976). b) J. Nokami, T. Ono, S. Wakabayashi, A. Hazato, and S. Kurozumi, Tetrahedron Lett., <u>26</u>, 1985 (1985).
- 12) R. Noyori, I. Tamino, M. Yamada, and M. Nishizawa, J. Am. Chem. Soc., 106, 6717 (1984).

(Received in Japan 1 August 1985)